
ABB Robotics

Operating manual
Introduction to RAPID

Trace back information:
Workspace R13-2 version a2
Checked in 2013-09-30
Skribenta version 4.0.378

Operating manual
Introduction to RAPID

RobotWare 5.60

Document ID: 3HAC029364-001
Revision: B

© Copyright 2007, 2013 ABB. All rights reserved.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damages to
persons or property, fitness for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's
written permission.
Additional copies of this manual may be obtained from ABB.
The original language for this publication is English. Any other languages that are
supplied have been translated from English.

© Copyright 2007, 2013 ABB. All rights reserved.
ABB AB

Robotics Products
Se-721 68 Västerås

Sweden

Table of contents
7Overview of this manual ...
9Product documentation, IRC5 ..

11Safety ..
12Terminology ..

131 RAPID basics
131.1 About RAPID ..
141.2 RAPID data ..
141.2.1 Variables ...
161.2.2 Persistent variables ...
171.2.3 Constants ..
181.2.4 Operators ..
191.3 Controlling the program flow ...
191.3.1 IF THEN ..
211.3.2 Examples with logical conditions and IF statements
221.3.3 FOR loop ...
231.3.4 WHILE loop ..
241.4 Rules and recommendations for RAPID syntax ...
241.4.1 General RAPID syntax rules ..
251.4.2 Recommendations for RAPID code ...

272 RAPID robot functionality
272.1 Move instructions ..
272.1.1 MoveL instruction ..
292.1.2 Coordinate systems ...
302.1.3 Examples with MoveL ..
322.1.4 Other move instructions ...
332.1.5 Execution behavior in corner zones ..
352.2 I/O signals ...
352.2.1 I/O signals ...
362.3 User interaction ..
362.3.1 Communicate with the FlexPendant ..

393 Structure
393.1 RAPID procedure ..
413.2 Modules ..
423.3 Structured design ..

474 Data with multiple values
474.1 Arrays ...
484.2 Composite data types ..

515 RAPID instructions and functions
515.1 Instructions ..
525.2 Functions ..

536 What to read next
536.1 Where to find more information ..

55Index

3HAC029364-001 Revision: B 5
© Copyright 2007, 2013 ABB. All rights reserved.

Table of contents

This page is intentionally left blank

Overview of this manual
About this manual

This manual is intended as a first introduction to RAPID. A lot of functionality in
RAPID is left out, but the most essential parts are described so that it can be easily
understood for everybody. This manual does not make you an expert RAPID
programmer, but it can help you understand the concept of programming with
RAPID. The details can always be found in the reference manuals.

Usage
This manual should be read before starting to program. It does not contain
everything you need to know, but you need to be familiar with most things in this
manual, before starting to write a RAPID program.
This manual does not replace the educational courses in RAPID, but can
complement it.

Who should read this manual?
This manual is intended for someone with no previous experience in programming,
e.g. a robot operator who wants to learn how to program the robot.

Prerequisites
There are no prerequisites for this manual.

Organization of chapters
The manual is organized in the following chapters:

ContentsChapter

The fundamentals of programming. This functionality is
similar in most high level programming languages.

1 RAPID basics

Describes the functionality that makes RAPID unique,
i.e. move instructions, I/O signals and communication
with a FlexPendant.

2 RAPID robot functionality

Describes how to create procedures. Also contains a
brief introduction to how to apply a structured design of
a program.

3 Structure

Describes arrays and complex data types.4 Data with multiple values

A short explanation of what the RAPID instructions and
functions are.

5 RAPID instructions and func-
tions

Where to find more information if you want to continue
your studies of RAPID.

6 What to read next

References

Document IdReference

3HAC16580-1Technical reference manual - RAPID overview

3HAC16581-1Technical reference manual - RAPID Instructions, Functions and
Data types

3HAC16585-1Technical reference manual - RAPID kernel

Continues on next page
3HAC029364-001 Revision: B 7

© Copyright 2007, 2013 ABB. All rights reserved.

Overview of this manual

Document IdReference

3HAC16590-1Operating manual - IRC5 with FlexPendant

Revisions

DescriptionRevision

First edition-

The data type dnum added to Variables on page 14.A

Minor corrections.

Note

The option MultiMove is not available in RobotWare 5.60.

B

8 3HAC029364-001 Revision: B
© Copyright 2007, 2013 ABB. All rights reserved.

Overview of this manual

Continued

Product documentation, IRC5
Categories for manipulator documentation

The manipulator documentation is divided into a number of categories. This listing
is based on the type of information in the documents, regardless of whether the
products are standard or optional.
All documents listed can be ordered from ABB on a DVD. The documents listed
are valid for IRC5 manipulator systems.

Product manuals
Manipulators, controllers, DressPack/SpotPack, and most other hardware will be
delivered with a Product manual that generally contains:

• Safety information.
• Installation and commissioning (descriptions of mechanical installation or

electrical connections).
• Maintenance (descriptions of all required preventive maintenance procedures

including intervals and expected life time of parts).
• Repair (descriptions of all recommended repair procedures including spare

parts).
• Calibration.
• Decommissioning.
• Reference information (safety standards, unit conversions, screw joints, lists

of tools).
• Spare parts list with exploded views (or references to separate spare parts

lists).
• Circuit diagrams (or references to circuit diagrams).

Technical reference manuals
The technical reference manuals describe reference information for robotics
products.

• Technical reference manual - Lubrication in gearboxes: Description of types
and volumes of lubrication for the manipulator gearboxes.

• Technical reference manual - RAPID overview: An overview of the RAPID
programming language.

• Technical referencemanual - RAPID Instructions, Functions and Data types:
Description and syntax for all RAPID instructions, functions, and data types.

• Technical reference manual - RAPID kernel: A formal description of the
RAPID programming language.

• Technical reference manual - System parameters: Description of system
parameters and configuration workflows.

Application manuals
Specific applications (for example software or hardware options) are described in
Application manuals. An application manual can describe one or several
applications.

Continues on next page
3HAC029364-001 Revision: B 9

© Copyright 2007, 2013 ABB. All rights reserved.

Product documentation, IRC5

An application manual generally contains information about:
• The purpose of the application (what it does and when it is useful).
• What is included (for example cables, I/O boards, RAPID instructions, system

parameters, DVD with PC software).
• How to install included or required hardware.
• How to use the application.
• Examples of how to use the application.

Operating manuals
The operating manuals describe hands-on handling of the products. The manuals
are aimed at those having first-hand operational contact with the product, that is
production cell operators, programmers, and trouble shooters.
The group of manuals includes (among others):

• Operating manual - Emergency safety information
• Operating manual - General safety information
• Operating manual - Getting started, IRC5 and RobotStudio
• Operating manual - Introduction to RAPID
• Operating manual - IRC5 with FlexPendant
• Operating manual - RobotStudio
• Operatingmanual - Trouble shooting IRC5, for the controller and manipulator.

10 3HAC029364-001 Revision: B
© Copyright 2007, 2013 ABB. All rights reserved.

Product documentation, IRC5

Continued

Safety
Safety of personnel

A robot is heavy and extremely powerful regardless of its speed. A pause or long
stop in movement can be followed by a fast hazardous movement. Even if a pattern
of movement is predicted, a change in operation can be triggered by an external
signal resulting in an unexpected movement.
Therefore, it is important that all safety regulations are followed when entering
safeguarded space.

Safety regulations
Before beginning work with the robot, make sure you are familiar with the safety
regulations described in the manualOperatingmanual - General safety information.

3HAC029364-001 Revision: B 11
© Copyright 2007, 2013 ABB. All rights reserved.

Safety

Terminology
About the terms

This manual is generally written for beginners, regarding both programming and
robots. However, some terms are used that may be familiar only to those with some
knowledge about programming and/or industrial robots. These terms are described
in this terminology.

Terms

DescriptionTerm

A hand held terminal for controlling a robot system.FlexPendant

The robot controller is basically a computer that controls the robot.Robot controller

Rules for how a language is allowed to be written. It can be seen as the
grammar of the programming language.

Syntax

The syntax of a programming language is much more strict than in or-
dinary human language. Humans are intelligent and would understand
if I say "I fast run" instead of "I run fast". Computers, on the other hand,
are stupid and would not understand anything unless the syntax is ab-
solutely correct.

12 3HAC029364-001 Revision: B
© Copyright 2007, 2013 ABB. All rights reserved.

Terminology

1 RAPID basics
1.1 About RAPID

What is RAPID
If you want a computer to do something, a program is required. RAPID is a
programming language for writing such a program.
The native language of computers consists of only zeros and ones. This is virtually
impossible for humans to understand. Therefore computers are taught to understand
a language that is relatively easy to understand - a high level programming
language. RAPID is a high level programming language, it uses some English
words (like IF and FOR) to make it understandable for humans.

Simple RAPID program example
Let us look at a simple example to see what a RAPID program can look like:

MODULE MainModule

VAR num length;

VAR num width;

VAR num area;

PROC main()

length := 10;

width := 5;

area := length * width;

TPWrite "The area of the rectangle is " \Num:=area;

ENDPROC

ENDMODULE

This program will calculate the area of a rectangle and write on the FlexPendant:
The area of the rectangle is 50

3HAC029364-001 Revision: B 13
© Copyright 2007, 2013 ABB. All rights reserved.

1 RAPID basics
1.1 About RAPID

1.2 RAPID data

1.2.1 Variables

Data types
There are many different data types in RAPID. For now, we will focus on the four
general data types:

DescriptionData type

Numerical data, can be both integer and decimal number. For example
10 or 3.14159.

num

Numerical data with higher resolution than num . Can be both integer (that
can handle large values) and decimal number (with more decimal places).
For example 4503599627370496 or 3.141592653589793.

dnum

A text string. E.g. "This is a string". Maximum of 80 characters.string

A boolean (logical) variable. Can only have the values TRUE or FALSE.bool

All other data types are based on these four. If you understand them, how to perform
operations on them and how they can be combined to more complex data types,
you can easily understand all data types.

Variable characteristics
A variable contains a data value. If the program is stopped and started the variable
keeps its value, but if the program pointer is moved to main the variable data value
is lost.

Declaring a variable
Declaring a variable is the way of defining a variable name and which data type it
should have. A variable is declared using the keyword VAR, according to the syntax:

VAR datatypeidentifier;

Example
VAR num length;

VAR dnum pi;

VAR string name;

VAR bool finished;

Assigning values
A value is assigned to a variable using the instruction :=

length := 10;

pi := 3.141592653589793;

name := "John"

finished := TRUE;

Note that := is not an equal sign. It means that the expression to the right is passed
to the variable on the left. There can only be a variable to the left of :=
For example, the following is a correct RAPID code resulting in reg1 having the
value 3:

reg1 := 2;

Continues on next page
14 3HAC029364-001 Revision: B

© Copyright 2007, 2013 ABB. All rights reserved.

1 RAPID basics
1.2.1 Variables

reg1 := reg1 + 1;

The assignment can be made at the same time as the variable declaration:
VAR num length := 10;

VAR dnum pi := 3.141592653589793;

VAR string name := "John";

VAR bool finished := TRUE;

3HAC029364-001 Revision: B 15
© Copyright 2007, 2013 ABB. All rights reserved.

1 RAPID basics
1.2.1 Variables

Continued

1.2.2 Persistent variables

What is a persistent variable
A persistent variable is basically the same as an ordinary variable, but with one
important difference. A persistent variable remembers the last value it was assigned,
even if the program is stopped and started from the beginning again.

Declaring a persistent variable
A persistent variable is declared using the keyword PERS. At declaration an initial
value must be assigned.

PERS num nbr := 1;

PERS string string1 := "Hello";

Example
Consider the following code example:

PERS num nbr := 1;

PROC main()

nbr := 2;

ENDPROC

If this program is executed, the initial value is changed to 2. The next time the
program is executed the program code will look like this:

PERS num nbr := 2;

PROC main()

nbr := 2;

ENDPROC

16 3HAC029364-001 Revision: B
© Copyright 2007, 2013 ABB. All rights reserved.

1 RAPID basics
1.2.2 Persistent variables

1.2.3 Constants

What is a constant?
A constant contains a value, just like a variable, but the value is always assigned
at declaration and after that the value can never be changed. The constant can be
used in the program in the same way as a variable, except that it is not allowed to
assign a new value to it.

Constant declaration
The constant is declared using the keyword CONST followed by data type, identifier
and assignment of a value.

CONST num gravity := 9.81;

CONST string greating := "Hello";

Why use constants?
By using a constant instead of a variable, you can be sure that the value is not
changed somewhere in the program.
Using a constant instead of writing the value directly in the program is better if you
need to update the program with another value on the constant. Then you only
have to change in one place and can be sure you have not forgotten any occurrence
of the value.

3HAC029364-001 Revision: B 17
© Copyright 2007, 2013 ABB. All rights reserved.

1 RAPID basics
1.2.3 Constants

1.2.4 Operators

Numerical operators
These operators operate on the data type num and return the data type num. I.e. in
the examples below, variables reg1, reg2 and reg3 are of data type num.

ExampleDescriptionOperator

reg1 := reg2 + reg3;Addition+

reg1 := reg2 - reg3;Subtraction
Unary minus

-
reg1 := -reg2;

reg1 := reg2 * reg3;Multiplication*

reg1 := reg2 / reg3;Division/

Relational operators
These operators return the data type bool.
In the examples, reg1 and reg2 are data type num while flag1 is bool.

ExampleDescriptionOperator

flag1 := reg1 = reg2;equal to=
flag1 is TRUE if reg1 equals reg2

flag1 := reg1 < reg2;less than<
flag1 is TRUE if reg1 is less than reg2

flag1 := reg1 > reg2;greater than>
flag1 is TRUE if reg1 is greater than reg2

flag1 := reg1 <= reg2;less than or equal to<=
flag1 is TRUE if reg1 is less than or equal to
reg2

flag1 := reg1 >= reg2;greater than or equal to>=
flag1 is TRUE if reg1 is greater than or equal
to reg2

flag1 := reg1 <> reg2;not equal to<>
flag1 is TRUE if reg1 is not equal to reg2

Logical operators are often used together with the IF instruction. For code
examples, see Examples with logical conditions and IF statements on page 21.

String operator

ExampleDescriptionOperator

VAR string firstname := "John";String concatenation+
VAR string lastname := "Smith";

VAR string fullname;

fullname := firstname + " " +
lastname;

The variable fullname will contain the string
"John Smith".

18 3HAC029364-001 Revision: B
© Copyright 2007, 2013 ABB. All rights reserved.

1 RAPID basics
1.2.4 Operators

1.3 Controlling the program flow

1.3.1 IF THEN

About the program flow
The program examples we have seen so far are executed sequentially, from top
to bottom. For more complex programs, we may want to control which code is
executed, in which order, and how many times. First we will have a look at how to
set up conditions for if a program sequence should be executed or not.

IF
The IF instruction can be used when a set of statements only should be executed
if a specified condition is met.
If the logical condition in the IF statement is true, then the program code between
the keywords THEN and ENDIF is executed. If the condition is false, that code is
not executed and the execution continues after ENDIF.

Example
In this example the string string1 is written on the FlexPendant if it is not an
empty string. If string1 is an empty string, i.e. contains no characters, then no
action is taken.

VAR string string1 := "Hello";

IF string1 <> "" THEN

TPWrite string1;

ENDIF

ELSE
An IF statement can also contain program code to be executed if the condition is
false.
If the logical condition in the IF statement is true, then the program code between
the keywords THEN and ELSE is executed. If the condition is false, then the code
between the keywords ELSE and ENDIF is executed.

Example
In this example the string string1 is written on the FlexPendant if it is not an
empty string. If string1 is an empty string, then the text "The string is empty" is
written.

VAR string string1 := "Hello";

IF string1 <> "" THEN

TPWrite string1;

ELSE

TPWrite "The string is empty";

ENDIF

Continues on next page
3HAC029364-001 Revision: B 19

© Copyright 2007, 2013 ABB. All rights reserved.

1 RAPID basics
1.3.1 IF THEN

ELSEIF
Sometimes you have more than two alternative program sequences. You can then
use ELSEIF to set up several alternatives.

Example
In this example different texts are written depending on the value on the variable
time.

VAR num time := 38.7;

IF time < 40 THEN

TPWrite "Part produced at fast rate";

ELSEIF time < 60 THEN

TPWrite "Part produced at average rate";

ELSE

TPWrite "Part produced at slow rate";

ENDIF

Note that since the first condition is true the first text will be written. The two other
texts will not be written (even though it is true that time is less than 60).

20 3HAC029364-001 Revision: B
© Copyright 2007, 2013 ABB. All rights reserved.

1 RAPID basics
1.3.1 IF THEN

Continued

1.3.2 Examples with logical conditions and IF statements

Example
Use the IF statement to determine which text to write on the FlexPendant. Write
on the FlexPendant which part is fastest to produce.

VAR string part1 := "Shaft";

VAR num time1;

VAR string part2 := "Pipe";

VAR num time2;

PROC main()

time1 := 41.8;

time2 := 38.7;

IF time1 < time2 THEN

TPWrite part1 + " is fastest to produce";

ELSEIF time1 > time2 THEN

TPWrite part2 + " is fastest to produce";

ELSE

TPWrite part1 + " and " + part2 + " are equally fast to
produce";

ENDIF

ENDPROC

Example
If it takes more than 60 seconds to produce a part, write a message on the
FlexPendant. If the boolean variable full_speed is FALSE the message will tell
the operator to increase the robot speed. If full_speed is TRUE, the message will
ask the operator to examine the reason for the slow production.

VAR num time := 62.3;

VAR bool full_speed := TRUE;

PROC main()

IF time > 60 THEN

IF full_speed THEN

TPWrite "Examine why the production is slow";

ELSE

TPWrite "Increase robot speed for faster production";

ENDIF

ENDIF

ENDPROC

3HAC029364-001 Revision: B 21
© Copyright 2007, 2013 ABB. All rights reserved.

1 RAPID basics
1.3.2 Examples with logical conditions and IF statements

1.3.3 FOR loop

Repeating a code sequence
Another way of controlling the program flow is to repeat a program code sequence
a number of times.

How does the FOR loop work
The following code will repeat writing "Hello" 5 times:

FOR i FROM 1 TO 5 DO

TPWrite "Hello";

ENDFOR

The syntax of the FOR statement is:
FOR counter FROM startvalue TO endvalue DO

program code to be repeated

ENDFOR

The counter does not have to be declared, but acts as a numeric variable inside
the FOR loop. The first time the code is executed, the counter has the value specified
by the startvalue. The value of the counter is then increased by 1 for each time the
code is executed. The last time the code executes is when the counter is equal to
endvalue. After that, the execution continues with the programming code after
ENDFOR.

Using the counter value
The value of the counter can be used in the FOR loop.
For example, calculating the sum of all numbers from 1 to 50 (1+2+3+...+49+50)
can be programmed like this:

VAR num sum := 0;

FOR i FROM 1 TO 50 DO

sum := sum + i;

ENDFOR

It is not allowed to assign a value to the counter in the FOR loop.

22 3HAC029364-001 Revision: B
© Copyright 2007, 2013 ABB. All rights reserved.

1 RAPID basics
1.3.3 FOR loop

1.3.4 WHILE loop

Repeating with condition
The repeating of a code sequence can be combined with the conditional execution
of the code sequence. With the WHILE loop the program will continue repeating
the code sequence as long as the condition is true.

WHILE syntax
The syntax for the WHILE loop is:

WHILE condition DO

program code to be repeated

ENDWHILE

If the condition is false to begin with, the code sequence will never be executed.
If the condition is true, the code sequence will be executed repeatedly until the
condition is no longer true.

Example
The following program code will add numbers (1+2+3+...) until the sum reaches
100.

VAR num sum := 0;

VAR num i := 0;

WHILE sum <= 100 DO

i := i + 1;

sum := sum + i;

ENDWHILE

Do not create eternal or heavy loops without wait instruction
If the condition never becomes false the loop will continue constantly and consume
vast amount of computer power. It is allowed to write an eternal loop, but then it
must contain some waiting instruction that allows the computer to perform other
tasks in the meantime.
Heavy loops (with lots of calculations and writing on the FlexPendant, without move
instructions) can require some waiting instruction even if the number of loops are
limited.

WHILE TRUE DO

! Some code

...

! Wait instruction that waits for 1 second

WaitTime 1;

ENDWHILE

Note that move instructions work as waiting instructions, since the execution does
not continue until the robot has reached its target.

3HAC029364-001 Revision: B 23
© Copyright 2007, 2013 ABB. All rights reserved.

1 RAPID basics
1.3.4 WHILE loop

1.4 Rules and recommendations for RAPID syntax

1.4.1 General RAPID syntax rules

Semicolon
The general rule is that each statement ends with a semicolon.

Examples
Variable declaration:

VAR num length;

Assigning values:
area := length * width;

Most instruction calls:
MoveL p10,v1000,fine,tool0;

Exceptions
Some special instructions do not end with a semicolon. Instead there are special
keywords to indicate where they end.
Example of instructions that do not end with semicolon:

Terminating keywordInstruction keyword

ENDIFIF

ENDFORFOR

ENDWHILEWHILE

ENDPROCPROC

These keywords are very important to create a good structure of a RAPID program.
They are thoroughly described later in this manual.

Comments
A line starting with ! will not be interpreted by the robot controller. Use this to write
comments about the code.

Example
! Calculate the area of the rectangle

area := length * width;

24 3HAC029364-001 Revision: B
© Copyright 2007, 2013 ABB. All rights reserved.

1 RAPID basics
1.4.1 General RAPID syntax rules

1.4.2 Recommendations for RAPID code

Capitalized keywords
RAPID is not case sensitive, but it is recommended that all reserved words (e.g.
VAR, PROC) are written in capital letters. For a complete list of reserved words, see
Technical reference manual - RAPID overview.

Indentations
To make the programming code easy to grasp, use indentation. Everything inside
a PROC (between PROC and ENDPROC) should be indented. Everything inside an
IF-, FOR- or WHILE-statement should be further indented.
When programming with the FlexPendant, the indentation is done automatically.

Example
VAR bool repeat;

VAR num times;

PROC main()

repeat := TRUE;

times := 3;

IF repeat THEN

FOR i FROM 1 TO times DO

TPWrite "Hello!";

ENDFOR

ENDIF

END PROC

Note that it is easy to see where the IF statement starts and ends. If you would
have several IF statements and no indentations, it would be virtually impossible
to find which ENDIF corresponds to which IF.

3HAC029364-001 Revision: B 25
© Copyright 2007, 2013 ABB. All rights reserved.

1 RAPID basics
1.4.2 Recommendations for RAPID code

This page is intentionally left blank

2 RAPID robot functionality
2.1 Move instructions

2.1.1 MoveL instruction

Overview
The advantage with RAPID is that, except for having most functionality found in
other high level programming languages, it is specially designed to control robots.
Most importantly, there are instructions for making the robot move.

MoveL
A simple move instruction can look like this:

MoveL p10, v1000, fine, tool0;

where:
• MoveL is an instruction that moves the robot linearly (in a strait line) from its

current position to the specified position.
• p10 specifies the position that the robot shall move to.
• v1000 specifies that the speed of the robot shall be 1000 mm/s.
• fine specifies that the robot shall go exactly to the specified position and

not cut any corners on its way to the next position.
• tool0 specifies that it is the mounting flange at the tip of the robot that should

move to the specified position.

MoveL syntax
MoveL ToPoint Speed Zone Tool;

ToPoint
The destination point defined by a constant of data type robtarget. When
programming with the FlexPendant you can assign a robtarget value by pointing
out a position with the robot. When programming offline, it can be complicated to
calculate the coordinates for a position.
robtarget will be explained further later, in section Composite data types on
page 48. For now, let us just accept that the position x=600, y=-100, z=800 can be
declared and assigned like this:

CONST robtarget p10 := [[600, -100, 800], [1, 0, 0, 0], [0, 0, 0,
0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

Speed
The speed of the movement defined by a constant of data type speeddata. There
are plenty of predefined values, such as:

ValuePredefined speeddata

5 mm/sv5

100 mm/sv100

1000 mm/sv1000

Continues on next page
3HAC029364-001 Revision: B 27

© Copyright 2007, 2013 ABB. All rights reserved.

2 RAPID robot functionality
2.1.1 MoveL instruction

ValuePredefined speeddata

Maximum speed for the robotvmax

A complete list of predefined speeddata values is found in Technical reference
manual - RAPID Instructions, Functions and Data types, section Data types and
speeddata.
When using a predefined value, it should not be declared or assigned.

Zone
Specifies a corner zone defined by a constant of data type zonedata. There are
many predefined values, such as:

ValuePredefined zonedata

The robot will go to exactly the specified positionfine

The robot path can cut corners when it is less than
10 mm from ToPoint.

z10

The robot path can cut corners when it is less than
50 mm from ToPoint.

z50

A complete list of predefined zonedata values is found in Technical reference
manual - RAPID Instructions, Functions and Data types, section Data types and
zonedata.
When using a predefined value, it should not be declared or assigned.
The following RAPID instructions will result in the robot path shown below:

MoveL p10, v1000, z50, tool0;

MoveL p20, v1000, fine, tool0;

xx0700000358

Tool
Specifies the tool that the robot is using, defined by a persistent variable of data
type tooldata. If a welding gun, glue gun or a pen is attached to the robot, we
want to program the ToPoint for the tip of this tool. This is done automatically if a
tooldata is declared, assigned and used in the MoveL instruction.
tool0 is a predefined tool, representing the robot without any tool mounted on it,
and should not be declared or assigned. Any other tool should be declared and
assigned before being used.

28 3HAC029364-001 Revision: B
© Copyright 2007, 2013 ABB. All rights reserved.

2 RAPID robot functionality
2.1.1 MoveL instruction

Continued

2.1.2 Coordinate systems

Base coordinate system
The position that a move instruction moves to is specified as coordinates in a
coordinate system. If no coordinate system is specified, the position is given relative
to the robot base coordinate system (also called base frame). The base coordinate
system has its origin in the robot base.

xx0700000397

Customized coordinate systems
Another coordinate system can be defined and used by move instructions. Which
coordinate system the move instruction shall use is specified with the optional
argument \WObj.

MoveL p10, v1000, z50, tool0 \WObj:=wobj1;

For information about how to define a coordinate system, see Technical reference
manual - RAPID Instructions, Functions and Data types, section Data types and
wobjdata.
For more information about coordinate systems, see Technical reference
manual - RAPID overview, section Coordinate systems.

3HAC029364-001 Revision: B 29
© Copyright 2007, 2013 ABB. All rights reserved.

2 RAPID robot functionality
2.1.2 Coordinate systems

2.1.3 Examples with MoveL

Draw a square
A robot is holding a pen above a piece of paper on a table. We want the robot to
move the tip of the pen down to the paper and then draw a square.

xx0700000362

PERS tooldata tPen := [TRUE, [[200, 0, 30], [1, 0, 0 ,0]], [0.8,
[62, 0, 17], [1, 0, 0, 0], 0, 0, 0]];

CONST robtarget p10 := [[600, -100, 800], [0.707170, 0, 0.707170,
0], [0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST robtarget p20 := [[600, 100, 800], [0.707170, 0, 0.707170,
0], [0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST robtarget p30 := [[800, 100, 800], [0.707170, 0, 0.707170,
0], [0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST robtarget p40 := [[800, -100, 800], [0.707170, 0, 0.707170,
0], [0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

PROC main()

MoveL p10, v200, fine, tPen;

MoveL p20, v200, fine, tPen;

MoveL p30, v200, fine, tPen;

MoveL p40, v200, fine, tPen;

MoveL p10, v200, fine, tPen;

ENDPROC

Continues on next page
30 3HAC029364-001 Revision: B

© Copyright 2007, 2013 ABB. All rights reserved.

2 RAPID robot functionality
2.1.3 Examples with MoveL

Draw with corner zones
Draw the same figure as in the previous example, but with a corner zone of 20 mm
at p20 and a corner zones of 50 mm at p40.

xx0700000363

VAR tooldata tPen := ...

...

VAR robtarget p40 := ...

PROC main()

MoveL p10, v200, fine, tPen;

MoveL p20, v200, z20, tPen;

MoveL p30, v200, fine, tPen;

MoveL p40, v200, z50, tPen;

MoveL p10, v200, fine, tPen;

ENDPROC

3HAC029364-001 Revision: B 31
© Copyright 2007, 2013 ABB. All rights reserved.

2 RAPID robot functionality
2.1.3 Examples with MoveL

Continued

2.1.4 Other move instructions

Several move instructions
There are a number of move instructions in RAPID. The most common are MoveL,
MoveJ and MoveC.

MoveJ
MoveJ is used to move the robot quickly from one point to another when that
movement does not have to be in a straight line.
Use MoveJ to move the robot to a point in the air close to where the robot will work.
A MoveL instruction does not work if, for example, the robot base is between the
current position and the programmed position, or if the tool reorientation is too
large. MoveJ can always be used in these cases.
The syntax of MoveJ is analog with MoveL.

Example
MoveJ p10, v1000, fine, tPen;

MoveC
MoveC is used to move the robot circularly in an arc.

Example
MoveL p10, v500, fine, tPen;

MoveC p20, p30, v500, fine, tPen;

MoveL p40, v500, fine, tPen;

xx0700000364

32 3HAC029364-001 Revision: B
© Copyright 2007, 2013 ABB. All rights reserved.

2 RAPID robot functionality
2.1.4 Other move instructions

2.1.5 Execution behavior in corner zones

Why the special execution in corner zones?
The execution of a program is usually carried out in the order the statements are
written.
In the following example the robot first moves to p10, then calculates the value of
reg1 and then moves to p20:

MoveL p10, v1000, fine, tool0;

reg1 := reg2 + reg3;

MoveL p20, v1000, fine, tool0;

But now look at this example:
MoveL p10, v1000, z50, tool0;

reg1 := reg2 + reg3;

MoveL p20, v1000, fine, tool0;

If the calculation of reg1 would not start until the robot was at p10, then the robot
would have to stop there and wait for the next move instruction. What actually
happens is that the code is executed ahead of the robot movement. reg1 is
calculated and the robot path in the corner zone is calculated before the robot
reaches p10.

How does this affect my program
In many cases the exact time of execution does not affect the program. There are
however examples of when it does affect the program.
If you want to draw a line with a spray gun between p10 and p20, and write the
program like this:

MoveL p10, v300, z10, tspray;

! Start spraying

SetDO do1, 1;

MoveL p20, v300, z10, tspray;

! Stop spraying

SetDO do1, 0;

MoveL p30, v300, fine, tspray;

The result may look something like this:

xx0700000387

Continues on next page
3HAC029364-001 Revision: B 33

© Copyright 2007, 2013 ABB. All rights reserved.

2 RAPID robot functionality
2.1.5 Execution behavior in corner zones

Solution
If you want to set signals in corner zones, and not use fine, then there are special
instructions for solving this, e.g. MoveLDO, TriggL and DispL. For more information
about these instructions, see Technical reference manual - RAPID Instructions,
Functions and Data types.

Avoid wait instructions or heavy calculations after corner zone
The robot controller can calculate the robot movement in corner paths even if there
are instructions in between the move instructions. However, if there is a wait
instruction after a move instruction with a corner zone, the robot will not be able
to handle this. Use fine in the move instruction before a wait instruction.
There is also a limitation as to how many (and complex) calculations the robot
controller can calculate in between move instructions with corner zones. This is
mainly a problem when calling procedures after a move instruction with a corner
zone.

34 3HAC029364-001 Revision: B
© Copyright 2007, 2013 ABB. All rights reserved.

2 RAPID robot functionality
2.1.5 Execution behavior in corner zones

Continued

2.2 I/O signals

2.2.1 I/O signals

About signals
Signals are used for communication with external equipment that the robot
cooperates with. Input signals are set by the external equipment and can be used
in the RAPID program to initiate when to perform something with the robot. Output
signals are set by the RAPID program and signals to the external equipment that
they should do something.

Setting up signals
Signals are configured in the system parameters for the robot system. It is possible
to set customized names for the signals. They should not be declared in the RAPID
program.

Digital input
A digital input signal can have the values 0 or 1. The RAPID program can read its
value but cannot set its value.

Example
If the digital input signal di1 is 1 then the robot will move.

IF di1 = 1 THEN

MoveL p10, v1000, fine, tPen;

ENDIF

Digital output
A digital output signal can have the values 0 or 1. The RAPID program can set the
value for a digital output signal, and thus affect external equipment. The value of
a digital output signal is set with the instruction SetDO.

Example
The robot has a grip tool that can be closed with the digital output signal do_grip.
The robot moves to the position where the pen is and closes the gripper. The robot
then moves to where it shall draw, now using the tool tPen.

MoveJ p0, vmax, fine, tGripper;

SetDO do_grip, 1;

MoveL p10, v1000, fine, tPen;

Other signal types
Digital signals are most common and easy to use. If a signal needs to have another
value than 0 or 1, there are analog signals and groups of digital signals that can
have other values. These types of signals are not covered in this manual.

3HAC029364-001 Revision: B 35
© Copyright 2007, 2013 ABB. All rights reserved.

2 RAPID robot functionality
2.2.1 I/O signals

2.3 User interaction

2.3.1 Communicate with the FlexPendant

About read and write instructions
In RAPID, there are several instructions for writing information to the robot operator,
as well as receiving input from the operator. We have already seen TPWrite in
previous examples. The only instructions we will look at here are TPWrite,
TPReadFK and TPReadNum.

TPWrite
Writing a message to the operator can be made with the instruction TPWrite.

TPWrite "Now producing exhaust pipes";

xx0700000374

Write a string variable
The text string written on the FlexPendant can come from a string variable, or the
written text can be a concatenation of a string variable and another string.

VAR string product := "exhaust pipe";

! Write only the product on the FlexPendant

TPWrite product;

! Write "Producing" and the product on the FlexPendant

TPWrite "Producing " + product;

Write a numerical variable
A numerical variable can be added after the string using the optional argument
\Num.

VAR num count := 13;

TPWrite "The number of produced units is: " \Num:=count;

Continues on next page
36 3HAC029364-001 Revision: B

© Copyright 2007, 2013 ABB. All rights reserved.

2 RAPID robot functionality
2.3.1 Communicate with the FlexPendant

TPReadFK
When writing a RAPID program that requires the operator to make a choice,
TPReadFK is a useful instruction. It allows up to five function keys to be displayed,
and the operator can choose which one to tap. The buttons will correspond to the
values 1 to 5.

VAR num answer;

TPReadFK answer, "Select which figure to draw", "Square",
"Triangle", stEmpty, stEmpty, stEmpty;

IF answer = 1 THEN

! code to draw square

ELSEIF answer = 2 THEN

! code to draw triangle

ELSE

! do nothing

ENDIF

xx0700000376

If the user selects "Square", the numeric variable answer gets the value 1. If the
user selects "Triangle", the numeric variable answer gets the value 2.
Five functions keys can be specified. If a key is not being used, write stEmpty

instead of the text on the button.

TPReadNum
TPReadNum allows the operator to write a number on the FlexPendant, rather than
just making a choice.

VAR num answer;

TPReadNum answer, "How many times shall I draw the figure?";

Continues on next page
3HAC029364-001 Revision: B 37

© Copyright 2007, 2013 ABB. All rights reserved.

2 RAPID robot functionality
2.3.1 Communicate with the FlexPendant

Continued

FOR i FROM 1 TO answer DO

! code to draw figure

ENDFOR

xx0700000378

The numeric variable answer gets the value that the operator types.

38 3HAC029364-001 Revision: B
© Copyright 2007, 2013 ABB. All rights reserved.

2 RAPID robot functionality
2.3.1 Communicate with the FlexPendant

Continued

3 Structure
3.1 RAPID procedure

What is a procedure
So far, all the RAPID code examples we have looked at have only executed code
in the procedure main. The execution automatically starts in the procedure named
main, but there can be several procedures.
A procedure must be declared with the keyword PROC followed by the procedure
name, the procedure arguments and the program code that the procedure should
execute. A procedure is called from another procedure (except main, which is
automatically called when the program starts).

Example
If we want to draw four squares of different sizes, we could write almost the same
program code four times. This would result in a lot of code and make the program
difficult to understand. A much more efficient way to write this program is to make
a procedure that draws the square, and let the main procedure call this procedure
four times.

PERS tooldata tPen:= ...

CONST robtarget p10:= ...

PROC main()

! Call the procedure draw_square

draw_square 100;

draw_square 200;

draw_square 300;

draw_square 400;

ENDPROC

PROC draw_square(num side_size)

VAR robtarget p20;

VAR robtarget p30;

VAR robtarget p40;

! p20 is set to p10 with an offset on the y value

p20 := Offs(p10, 0, side_size, 0);

p30 := Offs(p10, side_size, side_size, 0);

p40 := Offs(p10, side_size, 0, 0);

MoveL p10, v200, fine, tPen;

MoveL p20, v200, fine, tPen;

MoveL p30, v200, fine, tPen;

MoveL p40, v200, fine, tPen;

MoveL p10, v200, fine, tPen;

ENDPROC

Continues on next page
3HAC029364-001 Revision: B 39

© Copyright 2007, 2013 ABB. All rights reserved.

3 Structure
3.1 RAPID procedure

Procedure arguments
When declaring a procedure, all arguments are declared inside parenthesis after
the procedure name. This declaration contains data type and argument name for
each argument. The argument gets its value from the procedure call and the
argument acts as a variable inside the procedure (the argument cannot be used
outside its procedure).

PROC main()

my_procedure 14, "Hello", TRUE;

ENDPROC

PROC my_procedure(num nbr_times, string text, bool flag)

...

ENDPROC

Inside the procedure my_procedure above, nbr_times has the value 14, text
has the value "Hello" and flag has the value TRUE.
When calling the procedure, the order of the arguments is important to give the
right value to the right argument. No parenthesis are used in the procedure call.

Variables declared inside the procedure
Variables declared inside a procedure only exist inside that procedure. I.e. in the
example above, p10 can be used in all procedures in this module, but p20, p30
and p40 can only be used in the procedure draw_square.

40 3HAC029364-001 Revision: B
© Copyright 2007, 2013 ABB. All rights reserved.

3 Structure
3.1 RAPID procedure

Continued

3.2 Modules

About modules
A RAPID program can consist of one or several modules. Each module can contain
one or several procedures.
The small and simple programs that are shown in this manual only use one module.
In a more complex programming environment, some standard procedures, used
by many different programs, can be placed in a separate module.

Example
The module MainModule contains code that is specific for this program and
specifies what the robot should do in this particular program. The module
figures_module contains standard code that can be used by any program that
wants to draw a square, triangle or circle.

MODULE MainModule

...

draw_square;

...

ENDMODULE

MODULE figures_module

PROC draw_square()

...

ENDPROC

PROC draw_triangle()

...

ENDPROC

PROC draw_circle()

...

ENDPROC

ENDMODULE

Program modules
A program module is saved with the file ending .mod, e.g. figures_module.mod.
It makes no difference for the robot controller if the program is written in several
modules. The reason to use several program modules is only to make the program
easier to grasp and easier to reuse for the programmers.
There can only be one program active on the robot controller, i.e. only one of the
modules can contain a procedure named main.

System modules
A system module is saved with the file ending .sys, e.g. system_data_module.sys.
Data and procedures that should be kept in the system even if the program is
changed should be placed in a system module. For example, if a persistent variable
of type tooldata is declared in a system module, a recalibration of the tool is
preserved even if a new program is loaded.

3HAC029364-001 Revision: B 41
© Copyright 2007, 2013 ABB. All rights reserved.

3 Structure
3.2 Modules

3.3 Structured design

About structure
When first confronting a problem that you want to solve with a RAPID program, sit
down and analyze the problem and its components. If you start programming
without first thinking through the design, your program will be irrational. A well
designed program is less likely to contain errors and is easier for others to
understand. The time spent on design is paid back many times in testing and
maintenance of the program.

Break down the problem
Follow these steps to break down the problem into manageable parts:

1 Identify larger functionality. Try to split the problem into smaller pieces that
will be easier to handle.

2 Create a design structure. Draw a map of the functionality and how they
relate to each other.

3 Look at each block in the design structure. Can a block be further split into
smaller pieces? What is required to implement the block?

Example

Problem description
Create a RAPID program that can draw squares or triangles on a piece of paper.
Let the operator decide if it is a square or triangle that should be drawn next. When
the robot is finished drawing the figure the user shall be able to make the same
selection again until the operator taps on a Quit button.
When the robot has drawn 10 figures on the same paper, write a message that the
paper should be replaced and wait for the operator to tap an OK button.
Between drawings, check if di1 is 1. If it is, move to a pencil sharpener and set
do1 to 1 to start the sharpener and slowly move the pencil into the sharpener.
Normally we would need to redefine the tool since it gets shorter when it is
sharpened, but we will skip that step in this example.

Design structure

en0700000381

Continues on next page
42 3HAC029364-001 Revision: B

© Copyright 2007, 2013 ABB. All rights reserved.

3 Structure
3.3 Structured design

Program code
MODULE MainModule

PERS tooldata tPen := [TRUE, [[200, 0, 30], [1, 0, 0 ,0]], [0.8,
[62, 0, 17], [1, 0, 0, 0], 0, 0, 0]];

CONST robtarget p10 := [[600, -100, 800], [0.707170, 0, 0.707170,
0], [0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST robtarget pSharp1 := [[200, 500, 850], [1, 0, 0, 0], [0,
0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

PERS num count := 0;

PROC main()

user_selection;

IF count >= 10 THEN

change_paper;

! Reset count

count := 0;

ENDIF

IF di=1 THEN

sharpen_pencil;

ENDIF

ENDPROC

PROC user_selection()

VAR num answer;

TPReadFK answer, "Select which figure to draw", "Square",
"Triangle", "Quit", stEmpty, stEmpty;

IF answer = 1 THEN

draw_square;

count := count + 1;

ELSEIF answer = 2 THEN

draw_triangle;

count := count + 1;

ELSE

quit;

ENDIF

ENDPROC

PROC draw_square()

VAR robtarget p20;

VAR robtarget p30;

VAR robtarget p40;

! Define points that give a square with the side 200 mm

p20 := Offs(p10, 0, 200, 0);

p30 := Offs(p10, 200, 200, 0);

p40 := Offs(p10, 200, 0, 0);

MoveL p10, v200, fine, tPen;

MoveL p20, v200, fine, tPen;

MoveL p30, v200, fine, tPen;

MoveL p40, v200, fine, tPen;

Continues on next page
3HAC029364-001 Revision: B 43

© Copyright 2007, 2013 ABB. All rights reserved.

3 Structure
3.3 Structured design

Continued

MoveL p10, v200, fine, tPen;

ENDPROC

PROC draw_triangle()

VAR robtarget p20;

VAR robtarget p30;

! Define points for the triangle

p20 := Offs(p10, 0, 200, 0);

p30 := Offs(p10, 200, 100, 0);

MoveL p10, v200, fine, tPen;

MoveL p20, v200, fine, tPen;

MoveL p30, v200, fine, tPen;

MoveL p10, v200, fine, tPen;

ENDPROC

PROC quit()

TPWrite "Good bye!"

! Terminate the program

EXIT;

ENDPROC

PROC change_paper()

VAR num answer;

TPReadFK answer, "Change the paper", "OK", stEmpty, stEmpty,
stEmpty, stEmpty;

ENDPROC

PROC sharpen_pencil()

VAR robtarget pSharp2;

VAR robtarget pSharp3;

pSharp2 := Offs(pSharp1, 100, 0, 0);

pSharp3 := Offs(pSharp1, 120, 0, 0);

! Move quickly to position in front of sharpener

MoveJ pSharp1, vmax, z10, tPen;

! Place pencil in sharpener

MoveL pSharp2, v500, fine, tPen;

! Start the sharpener

SetDO do1, 1;

! Slowly move into the sharpener

MoveL pSharp3, v5, fine, tPen;

! Turn off sharpener

SetDO do1, 0;

! Move out of sharpener

MoveL pSharp1, v500, fine, tPen;

ENDPROC

ENDMODULE

Continues on next page
44 3HAC029364-001 Revision: B

© Copyright 2007, 2013 ABB. All rights reserved.

3 Structure
3.3 Structured design

Continued

Note that in production a program is normally run in continuous mode, so that
when the execution reaches the end of the main procedure it starts from the
beginning again. If this is not used, a WHILE loop can be used to repeat everything
inside the main procedure.

3HAC029364-001 Revision: B 45
© Copyright 2007, 2013 ABB. All rights reserved.

3 Structure
3.3 Structured design

Continued

This page is intentionally left blank

4 Data with multiple values
4.1 Arrays

What is an array
An array is a variable that contains more than one value. An index is used to indicate
one of the values.

Declaring an array
The declaration of an array looks like any other variable, except that the length of
the array is specified inside { }.

VAR num my_array{3};

Assigning values
An array can be assigned all its values at once. When assigning the whole array
the values are surrounded by [] and separated by commas.

my_array := [5, 10, 7];

It is also possible to assign a value to one of the elements in an array. Which
element to assign a value to is specified inside { }.

my_array{3} := 8;

Example
This example use a FOR loop and arrays to ask the operator for the estimated
production time for each part. It is a very efficient way to write code compared to
having one variable for each part and not be able to use the FOR loop.

VAR num time{3};

VAR string part{3} := ["Shaft", "Pipe", "Cylinder"];

VAR num answer;

PROC main()

FOR i FROM 1 TO 3 DO

TPReadNum answer, "Estimated time for " + part{i} + "?";

time{i} := answer;

ENDFOR

ENDPROC

3HAC029364-001 Revision: B 47
© Copyright 2007, 2013 ABB. All rights reserved.

4 Data with multiple values
4.1 Arrays

4.2 Composite data types

What is a composite data type
A composite data type is a data type that contains more than one value. It is
declared as a normal variable but contains a predefined number of values.

pos
A simple example of a composite data type is the data type pos. It contains three
numerical values (x, y and z).
The declaration looks like a simple variable:

VAR pos pos1;

Assigning all values is done like with an array:
pos1 := [600, 100, 800];

The different components have names instead of numbers. The components in
pos are named x, y and z. The value in one component is identified with the variable
name, a point and the component name:

pos1.z := 850;

orient
The data type orient specifies the orientation of the tool. The orientation is
specified by four numerical values, named q1, q2, q3 and q4.

VAR orient orient1 := [1, 0, 0, 0];

TPWrite "The value of q1 is " \Num:=orient1.q1;

pose
A data type can be composed of other composite data types. An example of this
is the data type pose, which consists of one pos named trans and one orient

named rot.
VAR pose pose1 := [[600, 100, 800], [1, 0, 0, 0]];

VAR pos pos1 := [650, 100, 850];

VAR orient orient1;

pose1.pos := pos1;

orient1 := pose1.rot;

pose1.pos.z := 875;

robtarget
robtarget is too complex a data type to explain in detail here, so we will settle
for a brief explanation.
robtarget consists of four parts:

DescriptionNameData type

x, y and z coordinatestranspos

Orientationrotorient

Specifies robot axes anglesrobconfconfdata

Specifies positions for up to 6 additional axes. The value
is set to 9E9 where no additional axis is used.

extaxextjoint

Continues on next page
48 3HAC029364-001 Revision: B

© Copyright 2007, 2013 ABB. All rights reserved.

4 Data with multiple values
4.2 Composite data types

VAR robtarget p10 := [[600, -100, 800], [0.707170, 0, 0.707170,
0], [0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

! Increase the x coordinate with 50

p10.trans.x := p10.trans.x + 50;

Detailed descriptions
Detailed descriptions of these data types and many more can be found in Technical
reference manual - RAPID Instructions, Functions and Data types, section Data
types.

3HAC029364-001 Revision: B 49
© Copyright 2007, 2013 ABB. All rights reserved.

4 Data with multiple values
4.2 Composite data types

Continued

This page is intentionally left blank

5 RAPID instructions and functions
5.1 Instructions

What is an instruction
A RAPID instruction acts as a pre-made procedure. An instruction call looks like
a procedure call with the instruction name followed by argument values.
Some RAPID instructions are simple and could easily have been written as a
procedure in RAPID. For example the instruction Add.

Add reg1, 3;

! The same functionality could be written:

reg1 := reg1 + 3;

Other RAPID instructions perform complicated processes that could not have been
programmed without these premade instructions. For example MoveL, which may
seem like a simple instruction but in the background there are calculations of how
much to move each robot axis and how much current each motor should have.
Because the program code for these calculations is already made, all you have to
do is write a simple instruction call.

MoveL p10, v1000, fine, tool0;

Detailed descriptions
Detailed descriptions of instructions can be found in Technical reference
manual - RAPID Instructions, Functions and Data types, section Instructions.

3HAC029364-001 Revision: B 51
© Copyright 2007, 2013 ABB. All rights reserved.

5 RAPID instructions and functions
5.1 Instructions

5.2 Functions

What is a function
A RAPID function is similar to an instruction but returns a value.

! Calculate the cosine of reg2

reg1 : = Cos(reg2);

Since the function returns a value, the result of the function can be assigned to a
variable.
The arguments in a function call are written inside parenthesis and are separated
with commas.

Include a function call in a statement
Anywhere, where a value can be used, a function returning a value of the same
data type can be used.

! Perform something if reg1 is smaller than -2 or greater than 2

IF Abs(reg1) > 2 THEN

...

! Convert the num time to string and concatenate with other strings

string1 := name + "’s time was " + NumToStr(time);

Simplify complicated calculations
A single function call can often replace several complex statements.
For example:

p20 := Offs(p10, 100, 200, 300);

can replace the following code:
p20 := p10;

p20.trans.x := p20.trans.x + 100;

p20.trans.y := p20.trans.y + 200;

p20.trans.z := p20.trans.z + 300;

Detailed descriptions
Detailed descriptions of functions can be found in Technical reference
manual - RAPID Instructions, Functions and Data types, section Functions.

52 3HAC029364-001 Revision: B
© Copyright 2007, 2013 ABB. All rights reserved.

5 RAPID instructions and functions
5.2 Functions

6 What to read next
6.1 Where to find more information

What to find in which manual

Where to read about itWhat do you want to know

Operating manual - IRC5 with
FlexPendant, section Program-
ming and testing

• How to write programs on the FlexPendant
• How to load programs to the robot controller
• How to test the program

Technical referencemanual - RAP-
ID overview

• More detailed information about the functionality
mentioned in this manual

• What instructions are there for a specific category
(e.g. move instructions or clock functionality)

• Descriptions of more advanced functionality (e.g.
interrupts or error handling)

Technical referencemanual - RAP-
ID Instructions, Functions and
Data types

• Information about a specific instruction, function
or data type

Technical referencemanual - RAP-
ID kernel

• Details about how the robot controller handles
different parts of RAPID

3HAC029364-001 Revision: B 53
© Copyright 2007, 2013 ABB. All rights reserved.

6 What to read next
6.1 Where to find more information

This page is intentionally left blank

Index
A
arguments, 40
arrays, 47
assigning values, 14

B
base coordinate system, 29
base frame, 29
bool, 14

C
comments, 24
communication, 35–36
complex data types, 48
computer performance, 23
conditional execution, 19, 23
constants, 17
coordinate systems, 29
corner zones, 31, 33

D
data types, 14, 48
declaration of variables, 14
design, 42
digital input, 35
digital output, 35
dnum, 14

E
ELSE, 19
ELSEIF, 20
eternal loops, 23

F
FlexPendant, 12, 36
FOR, 22
functions, 52

I
I/O signals, 35
IF, 19, 21
indentations, 25
input signal, 35
instructions, 51

L
logical conditions, 18–19, 21
loop, 22–23

M
main, 39
module, 41

MoveC, 32
move instructions, 27
MoveJ, 32
MoveL, 27, 30

N
num, 14

O
operators, 18
orient, 48
output signal, 35

P
performance, 23
pos, 48
pose, 48
PROC, 39
procedure, 39

R
RAPID functions, 52
RAPID instructions, 51
RAPID procedure, 39
repetition, 22–23
robot controller, 12
robtarget, 27, 48

S
safety, 11
semicolon, 24
signals, 35
speeddata, 27
string, 14
syntax, 12

T
terminology, 12
tooldata, 28
TPReadFK, 37
TPReadNum, 37
TPWrite, 36

V
variable declaration, 14
variables, 14

W
WHILE, 23
WObj, 29
work object, 29

Z
zonedata, 28

3HAC029364-001 Revision: B 55
© Copyright 2007, 2013 ABB. All rights reserved.

Index

Contact us

ABB AB
Discrete Automation and Motion
Robotics
S-721 68 VÄSTERÅS, Sweden
Telephone +46 (0) 21 344 400

ABB AS, Robotics
Discrete Automation and Motion
Box 265
N-4349 BRYNE, Norway
Telephone: +47 51489000

ABB Engineering (Shanghai) Ltd.
5 Lane 369, ChuangYe Road
KangQiao Town, PuDong District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

www.abb.com/robotics

3H
AC

02
93

64
-0

01
,R

ev
B,

en

	Cover Page
	Table of contents
	1 RAPID basics
	1.1 About RAPID
	What is RAPID
	Simple RAPID program example

	1.2 RAPID data
	1.2.1 Variables
	Data types
	Variable characteristics
	Declaring a variable
	Example

	Assigning values

	1.2.2 Persistent variables
	What is a persistent variable
	Declaring a persistent variable
	Example

	1.2.3 Constants
	What is a constant?
	Constant declaration
	Why use constants?

	1.2.4 Operators
	Numerical operators
	Relational operators
	String operator

	1.3 Controlling the program flow
	1.3.1 IF THEN
	About the program flow
	IF
	Example

	ELSE
	Example

	ELSEIF
	Example

	1.3.2 Examples with logical conditions and IF statements
	Example
	Example

	1.3.3 FOR loop
	Repeating a code sequence
	How does the FOR loop work
	Using the counter value

	1.3.4 WHILE loop
	Repeating with condition
	WHILE syntax
	Example
	Do not create eternal or heavy loops without wait instruction

	1.4 Rules and recommendations for RAPID syntax
	1.4.1 General RAPID syntax rules
	Semicolon
	Examples
	Exceptions

	Comments
	Example

	1.4.2 Recommendations for RAPID code
	Capitalized keywords
	Indentations
	Example

	2 RAPID robot functionality
	2.1 Move instructions
	2.1.1 MoveL instruction
	Overview
	MoveL
	MoveL syntax
	ToPoint
	Speed
	Zone
	Tool

	2.1.2 Coordinate systems
	Base coordinate system
	Customized coordinate systems

	2.1.3 Examples with MoveL
	Draw a square
	Draw with corner zones

	2.1.4 Other move instructions
	Several move instructions
	MoveJ
	Example

	MoveC
	Example

	2.1.5 Execution behavior in corner zones
	Why the special execution in corner zones?
	How does this affect my program
	Solution

	Avoid wait instructions or heavy calculations after corner zone

	2.2 I/O signals
	2.2.1 I/O signals
	About signals
	Setting up signals
	Digital input
	Example

	Digital output
	Example

	Other signal types

	2.3 User interaction
	2.3.1 Communicate with the FlexPendant
	About read and write instructions
	TPWrite
	Write a string variable
	Write a numerical variable

	TPReadFK
	TPReadNum

	3 Structure
	3.1 RAPID procedure
	What is a procedure
	Example
	Procedure arguments
	Variables declared inside the procedure

	3.2 Modules
	About modules
	Example
	Program modules
	System modules

	3.3 Structured design
	About structure
	Break down the problem
	Example
	Problem description
	Design structure
	Program code

	4 Data with multiple values
	4.1 Arrays
	What is an array
	Declaring an array
	Assigning values
	Example

	4.2 Composite data types
	What is a composite data type
	pos
	orient
	pose
	robtarget
	Detailed descriptions

	5 RAPID instructions and functions
	5.1 Instructions
	What is an instruction
	Detailed descriptions

	5.2 Functions
	What is a function
	Include a function call in a statement
	Simplify complicated calculations
	Detailed descriptions

	6 What to read next
	6.1 Where to find more information
	What to find in which manual

	Index

